f07 — Linear Equations (LAPACK) f07hve

NAG C Library Function Document
nag_ zpbrfs (f07hvc)

1 Purpose

nag_zpbrfs (f07hvc) returns error bounds for the solution of a complex Hermitian positive-definite band
system of linear equations with multiple right-hand sides, AX = B. It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

void nag_zpbrfs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer kd,
Integer nrhs, const Complex ab[], Integer pdab, const Complex afb[],
Integer pdafb, const Complex b[], Integer pdb, Complex x[], Integer pdx,
double ferr[], double berr[], NagError *fail)

3 Description

nag_zpbrfs (f07hvc) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex Hermitian positive-definite band system of linear equations with multiple right-hand
sides AX = B. The function handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of nag_zpbrfs (f07hvc) in terms of a single right-hand side b
and solution z.

Given a computed solution z, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that = is the exact solution of a
perturbed system

(A+6A)x =0+ b
|6a;;| < Blai;| and [6b;| < B|b;].

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |z; — &;|/ max |z;|
1 1

where Z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] 07hve. 1

f07hve NAG C Library Manual

2: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A has been
factorized, as follows:

if uplo = Nag_Upper, the upper triangular part of A is stored and A is factorized as U"U,
where U is upper triangular;

if uplo = Nag_Lower, the lower triangular part of A is stored and A is factorized as LL,
where L is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: kd — Integer Input
On entry: k, the number of super-diagonals or sub-diagonals of the matrix A.

Constraint: kd > 0.

5: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

6: ab[dim] — const Complex Input
Note: the dimension, dim, of the array ab must be at least max(1, pdab X n).
On entry: the n by n original Hermitian positive-definite band matrix A as supplied to nag_zpbtrf
(f07hrc).

7: pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array ab.

Constraint: pdab > kd + 1.

8: afb[dim| — const Complex Input
Note: the dimension, dim, of the array afb must be at least max(1, pdafb x n).

On entry: the Cholesky factor of A, as returned by nag_zpbtrf (f07hrc).

9: pdafb — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array afb.

Constraint: pdafb > kd + 1.

10: b[dim] — const Complex Input

Note: the dimension, dim, of the array b must be at least max(1,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

07hve.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07hve

11:

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag RowMajor, pdb > max(1, nrhs).

12: x[dim] — Complex Input/Output
Note: the dimension, dim, of the array x must be at least max(l,pdx x nrhs) when
order = Nag_ColMajor and at least max(1,pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix X is stored in x[(j — 1) x pdx + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + 7 — 1].
On entry: the n by r solution matrix X, as returned by nag_zpbtrs (f07hsc).

On exit: the improved solution matrix X.

13: pdx — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:
if order = Nag_ColMajor, pdx > max(1,n);
if order = Nag_RowMajor, pdx > max(1, nrhs).

14: ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).

On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...

15: berr[dim]| — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).

On exit: berr[j — 1] contains the component-wise backward error bound [for the jth solution
vector, that is, the jth column of x, for j=1,2,..., .

16: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, kd = (value).
Constraint: kd > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdafb = (value).
Constraint: pdafb > 0.

[NP3645/7] f07hve.3

f07hve NAG C Library Manual

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2

On entry, pdab = (value), kd = (value).
Constraint: pdab > kd + 1.

On entry, pdafb = (value), kd = (value).
Constraint: pdafb > kd + 1.

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 32nk real floating-
point operations. Each step of iterative refinement involves an additional 48nk real operations. This
assumes n >> k. At most 5 steps of iterative refinement are performed, but usually only 1 or 2 steps are
required.

Estimating the forward error involves solving a number of systems of linear equations of the form Az = b;
the number is usually 5 and never more than 11. Each solution involves approximately 16nk real
operations.

The real analogue of this function is nag_dpbrfs (f07hhc).
9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

07hve.4 [NP3645/7]

f07 — Linear Equations (LAPACK)

9.39 4+ 0.00: 1.08 — 1.731 0.00 + 0.00: 0.00 4 0.00:
A 1.08 +1.731 1.69 4+ 0.002 —0.04 + 0.297 0.00 4 0.00:
1 0.004+0.00; —0.04 —0.29; 2.65+0.00; —0.33 +2.244
0.00 4 0.00:7 0.00 +0.007 —0.33 —2.244 2.17 4+ 0.00z
and
—1242 + 68427 5430 — 56.56:

B:

-993 + 088 1832 + 4.76:

—-2730 — 0.0lz —440 4+ 997:

531 + 23.63: 943 +

1.41:

f07hvce

Here A is Hermitian positive-definite, and is treated as a band matrix, which must first be factorized by
nag_zpbtrf (f07hrc).

9.1 Program Text

/* nag_z
* Copyr

* Mark
*/

#include
#include
#include
#include
#include

pbrfs (£07hvc) Example Program.
ight 2001 Numerical Algorithms Group.

7, 2001.

<stdio.h>
<nag.h>
<nag_stdlib.h>
<nagf07.h>
<nagx04.h>

int main(void)

{

/* Scalars */
r i, j, k, kd, n, nrhs, pdab, pdafb, pdb, pdx;

Intege
Intege
Intege
Nag_Up
NagErr
Nag_Or

/* Ary
char

Comple
double

#ifdef N
#define
#define
#define
#define
#define
#define

r ferr_len, berr_len;
¥ exit_status=0;
loType uplo_enum;

or fail;

derType order;

ays */
uplo([2];

x *ab=0, #*afb=0, *b=0, *x=0;
*berr=0, *ferr=0;

AG_COLUMN_MAJOR
AB_UPPER(I,J) ab
AB_LOWER(I,J)
AFB_UPPER(I,J)
AFB_LOWER(I,J) a
B(I,J) b[(J-1)+*pd
X(I,J) x[(J 1) *pdx

J-1)*pdab + k + I - J - 1]
J-1)*pdab + I - J]
[(J-1)*pdafb + k + I - J - 1]
[(J-1)*pdafb + I - J]

I - 1]

I - 1]

[(
bl(
afb (
fo [(
b +
+

order Nag_ColMajor;
#else
#define AB_UPPER(I,J) ab[(I-1)#*pdab + J - I]
#define AB_LOWER(I,J) ab[(I-1)*pdab + k + J - I - 1]
#define AFB UPPER(J) afb[(I-1)*pdafb + J - I]
#define AFB_LOWER(I,J) afb[(I-1)*pdafb + k + J - I - 1]
#define B(I,J) b[(I-1)#*pdb + J - 1]
#define X(I,J) x[(I 1)*pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

Vprintf ("f07hvc Example Program Results\n\n")

/* Skip heading in data file */

[NP3645/7]

f07hve.5

f07hve

Vscanf ("s*x[*\n] ");
Vscanf ("$1d%1d%1d%*["\n] ",
pdab = kd + 1;
pdafb = kd + 1;
#ifdef NAG_COLUMN_MAJOR
pdb =
pdx =
#else
pdb =
pdx
#endif

&n, &kd,

I
o}
=
oy
0

ferr_len =
berr_len =

|
=]
=
oy
(]

/* Allocate memory */

if (!(berr = NAG_ALLOC(berr_len, double))
ferr = NAG_ALLOC(ferr_len, double))
ab = NAG_ALLOC((kd+1l) * n, Complex)
afb = NAG_ALLOC((kd+1l) * n, Complex
b = NAG_ALLOC(n * nrhs, Complex)) |
X NAG_ALLOC(n * nrhs, Complex)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file x/

Vscanf (" ' %1s ’'%*[*"\n] ", uplo);

if (*(unsigned char #*)uplo == 'L’)
uplo_enum = Nag_Lower;

else if (*(unsigned char *)uplo
uplo_enum = Nag_Upper;

else

{

IUI)

) 1
)) 1
|

NAG C Library Manual

&nrhs) ;

Vprintf ("Unrecognised character for Nag_UploType type\n");

exit_status = -1;
goto END;

}
k = kd + 1;
if (uplo_enum == Nag_Upper)
{
for (i =

{

1; 1 <= n; ++1)
for

{

(§J = 1i; j <= MIN(i+kd,n); ++3)

Vscanf (" (%1f , %1f
&AB_UPPER(1i,J)

"y
.im) ;
}

¥
Vscanf ("sx["\n] ");

}
else

{

for (i =

{

1; 1 <= n; ++1)
for

{

(jJ = MAX(1,i-kd); j <= 1i; ++3)
Vscanf (" (%1f , %1f
&AB_LOWER (i, J)

)"y,
.im) ;
}
}
Vscanf ("$x[*\n] ");
}
/* Read B from data file =*/
for (i = 1; 1 <= n; ++1)
{
for (3 = 1;
Vscanf ("

j <= nrhs; ++3j)

(s1f , %1f)", &B(i,]j).re,

JO07hve.6

&AB_UPPER(i,7).re,

&AB_LOWER(i,]j).re,

&B(1i,3).im);

[NP3645/7]

f07 — Linear Equations (LAPACK) f07hve

Vscanf ("sx["\n] ");
/* Copy A to AF and B to X */
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = 1i; j <= MIN(i+kd,n); ++3)
{
AFB_UPPER(i,j).re = AB_UPPER(i,Jj).re;
AFB_UPPER(i,j).im = AB_UPPER(i,]j).im;

}
¥
}
else
{
for (1 = 1; 1 <= n; ++1)
{
for (j = MAX(1l,i-kd); j <= 1i; ++3)
{
AFB_LOWER(1i,j).re = AB_LOWER(i,j).re;
AFB_LOWER(i,j).im = AB_LOWER(i,Jj).im;
}
¥
}
for (i = 1; i <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
{
X(i,j).re = B(i,]J).re;
X(i,3).im = B(i,3).im;
¥
}

/* Factorize A in the array AFP */
fO7hrc(order, uplo_enum, n, kd, afb, pdafb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7hrc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Compute solution in the array X =*/
fO07hsc(order, uplo_enum, n, kd, nrhs, afb, pdafb, x, pdx, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from fO7hsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Improve solution, and compute backward errors and =*/

/* estimated bounds on the forward errors */

fO07hvc(order, uplo_enum, n, kd, nrhs, ab, pdab, afb, pdafb,
b, pdb, x, pdx, ferr, berr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7hvc.\n%s\n", fail.message);
exit_status = 1;
goto END;
3

/* Print details of solution */

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

Vprintf ("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)

[NP3645/7] f07hve.7

f07hve NAG C Library Manual

Vprintf ("s1l.le%s", berr[j-1]1, j%7==0 2"\n":" ");
Vprintf ("\nEstimated forward error bounds (machine-dependent)\n")
for (j = 1; j <= nrhs; ++j)

Vprintf ("$11l.1le%s", ferr[j-1]1, Jj%7==0 2"\n":" ");
Vprintf ("\n") ;

END:

if (berr) NAG_FREE (berr);
if (ferr) NAG_FREE(ferr);
if (ab) NAG_FREE (ab) ;

if (afb) NAG_FREE(afb);
if (b) NAG_FREE (D) ;

if (x) NAG_FREE(x);
return exit_status;

9.2 Program Data

fO07hvc Example Program Data
4 1 2 :Values of N, KD and NRHS
"L’ :Value of UPLO
(9.39, 0.00)
(1.08, 1.73) (1.69, 0.00)

(-0.04,-0.29) (2.65, 0.00)
(-0.33,-2.24) (2.17, 0.00) :End of matrix A
(-12.42,68.42) (54.30,-56.56)
(-9.93, 0.88) (18.32, 4.706)
(-27.30,-0.01) (-4.40, 9.97)
(5.31,23.63) (9.43, 1.41) :End of matrix B

9.3 Program Results

fO07hvc Example Program Results

Solution(s)

1 2
1 (-1.0000, 8.0000) (5.0000,-6.0000)
2 (2.0000,-3.0000) (2.0000, 3.0000)
3 (-4.0000,-5.0000) (-8.0000, 4.0000)
4 (7.0000, 6.0000) (-1.0000,-7.0000)
Backward errors (machine-dependent)
3.2e-17 3.3e-17
Estimated forward error bounds (machine-dependent)
3.2e-14 3.0e-14

fO07hve.8 (last) [NP3645/7]

	f07hvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	kd
	nrhs
	ab
	pdab
	afb
	pdafb
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

